Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.934
Filtrar
1.
Protein Sci ; 33(5): e4970, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38591484

RESUMO

Histone H1 is involved in chromatin compaction and dynamics. In human cells, the H1 complement is formed by different amounts of somatic H1 subtypes, H1.0-H1.5 and H1X. The amount of each variant depends on the cell type, the cell cycle phase, and the time of development and can be altered in disease. However, the mechanisms regulating H1 protein levels have not been described. We have analyzed the contribution of the proteasome to the degradation of H1 subtypes in human cells using two different inhibitors: MG132 and bortezomib. H1 subtypes accumulate upon treatment with both drugs, indicating that the proteasome is involved in the regulation of H1 protein levels. Proteasome inhibition caused a global increase in cytoplasmatic H1, with slight changes in the composition of H1 bound to chromatin and chromatin accessibility and no alterations in the nucleosome repeat length. The analysis of the proteasome degradation pathway showed that H1 degradation is ubiquitin-independent. The whole protein and its C-terminal domain can be degraded directly by the 20S proteasome in vitro. Partial depletion of PA28γ revealed that this regulatory subunit contributes to H1 degradation within the cell. Our study shows that histone H1 protein levels are under tight regulation to prevent its accumulation in the nucleus. We revealed a new regulatory mechanism for histone H1 degradation, where the C-terminal disordered domain is responsible for its targeting and degradation by the 20S proteasome, a process enhanced by the regulatory subunit PA28γ.


Assuntos
Histonas , Complexo de Endopeptidases do Proteassoma , Humanos , Histonas/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Cromatina
2.
Protein Sci ; 33(5): e4975, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38588275

RESUMO

The deubiquitinase (DUB) ubiquitin-specific protease 14 (USP14) is a dual domain protein that plays a regulatory role in proteasomal degradation and has been identified as a promising therapeutic target. USP14 comprises a conserved USP domain and a ubiquitin-like (Ubl) domain separated by a 25-residue linker. The enzyme activity of USP14 is autoinhibited in solution, but is enhanced when bound to the proteasome, where the Ubl and USP domains of USP14 bind to the Rpn1 and Rpt1/Rpt2 units, respectively. No structure of full-length USP14 in the absence of proteasome has yet been presented, however, earlier work has described how transient interactions between Ubl and USP domains in USP4 and USP7 regulate DUB activity. To better understand the roles of the Ubl and USP domains in USP14, we studied the Ubl domain alone and in full-length USP14 by nuclear magnetic resonance spectroscopy and used small angle x-ray scattering and molecular modeling to visualize the entire USP14 protein ensemble. Jointly, our results show how transient interdomain interactions between the Ubl and USP domains of USP14 predispose its conformational ensemble for proteasome binding, which may have functional implications for proteasome regulation and may be exploited in the design of future USP14 inhibitors.


Assuntos
Complexo de Endopeptidases do Proteassoma , Ubiquitina , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Ubiquitina/química , Conformação Molecular , Modelos Moleculares
3.
Sci Rep ; 14(1): 7997, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580756

RESUMO

Hepatocellular carcinoma (HCC) is characterized by high incidence and fatality rates worldwide. In our exploration of prognostic factors in HCC, the 26s proteasome subunit, non-ATPase 1 (PSMD1) protein emerged as a significant contributor, demonstrating its potential as a therapeutic target in this aggressive cancer. PSMD1 is a subunit of the 19S regulatory particle in the 26S proteasome complex; the 19S particle controls the deubiquitination of ubiquitinated proteins, which are then degraded by the proteolytic activity of the complex. Proteasome-targeting in cancer therapy has received significant attention because of its practical application as an established anticancer agent. We investigated whether PSMD1 plays a critical role in cancer owing to its prognostic significance. PSMD1 depletion induced cell cycle arrest in G2/M phase, DNA damage and apoptosis of cancer cells, irrespective of the p53 status. PSMD1 depletion-mediated cell death was accompanied by an increase in overall protein ubiquitination. These phenotypes occurred exclusively in cancer cells, with no effects observed in normal cells. These findings indicate that PSMD1 depletion-mediated ubiquitination of cellular proteins induces cell cycle arrest and eventual death in cancer cells, emphasizing PSMD1 as a potential therapeutic target in HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Apoptose/genética , Carcinoma Hepatocelular/genética , Dano ao DNA , Neoplasias Hepáticas/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ubiquitinação
4.
Biochemistry ; 63(8): 1000-1015, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38577872

RESUMO

PI31 (Proteasome Inhibitor of 31,000 Da) is a 20S proteasome binding protein originally identified as an in vitro inhibitor of 20S proteasome proteolytic activity. Recently reported cryo-electron microscopy structures of 20S-PI31 complexes have revealed that the natively disordered proline-rich C-terminus of PI31 enters the central chamber in the interior of the 20S proteasome and interacts directly with the proteasome's multiple catalytic threonine residues in a manner predicted to inhibit their enzymatic function while evading its own proteolysis. Higher eukaryotes express an alternative form of the 20S proteasome (termed "immuno-proteasome") that features genetically and functionally distinct catalytic subunits. The effect of PI31 on immuno-proteasome function is unknown. We examine the relative inhibitory effects of PI31 on purified constitutive (20Sc) and immuno-(20Si) 20S proteasomes in vitro and show that PI31 inhibits 20Si hydrolytic activity to a significantly lesser degree than that of 20Sc. Unlike 20Sc, 20Si hydrolyzes the carboxyl-terminus of PI31 and this effect contributes to the reduced inhibitory activity of PI31 toward 20Si. Conversely, loss of 20Sc inhibition by PI31 point mutants leads to PI31 degradation by 20Sc. These results demonstrate unexpected differential interactions of PI31 with 20Sc and 20Si and document their functional consequences.


Assuntos
Complexo de Endopeptidases do Proteassoma , Inibidores de Proteassoma , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Microscopia Crioeletrônica , Proteínas/química , Citoplasma/metabolismo , Antivirais
5.
J Clin Immunol ; 44(4): 88, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578475

RESUMO

The ubiquitin-proteasome system (UPS) has a critical role in post-translational protein modification that is essential for the maintenance of all cellular functions, including immune responses. The proteasome complex is ubiquitously expressed and is responsible for degradation of short-lived structurally abnormal, misfolded and not-needed proteins that are targeted for degradation via ubiquitin conjugation. Over the last 14 years, an increasing number of human diseases have been linked to pathogenic variants in proteasome subunits and UPS regulators. Defects of the proteasome complex or its chaperons - which have a regulatory role in the assembly of the proteasome - disrupt protein clearance and cellular homeostasis, leading to immune dysregulation, severe inflammation, and neurodevelopmental disorders in humans. Proteasome-associated diseases have complex inheritance, including monogenic, digenic and oligogenic disorders and can be dominantly or recessively inherited. In this review, we summarize the current known genetic causes of proteasomal disease, and discuss the molecular pathogenesis of these conditions based on the function and cellular expression of mutated proteins in the proteasome complex.


Assuntos
Complexo de Endopeptidases do Proteassoma , Ubiquitina , Humanos , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Síndrome , Ubiquitina/metabolismo
6.
Mol Med ; 30(1): 50, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622518

RESUMO

BACKGROUND: Colorectal cancer standed as a global health challenge, ranking third in cancer incidence and second in cancer-related deaths worldwide. A deeper understanding of the intricate mechanisms driving colorectal cancer development was pressing need. STK16 had garnered attention in recent researches, while its involvement in cancer had been minimally explored. c-MYC had emerged as a key player in cancer biology. Due to its complex structure, multifunctionality, and intricate interactions, directly inhibiting the activity of c-MYC proves to be challenging. Hence, current research was directing efforts towards modulating c-MYC expression levels. METHODS: Immunoblot, Immunohistochemistry and immunoprecipitation assays were conducted to assess the indicated protein expression levels. RT-PCR was performed to detect the corresponding mRNA expression levels. The proliferation, migration, invasion, and colony formation abilities of the specified cancer cells were investigated using CCK8 assays, Brdu assays, transwell assays, and colony formation assays, respectively. Cellular and animal experiments were performed to investigate the correlation between STK16 signaling and c-MYC signaling. RESULTS: STK16 plays a positive regulatory role in the progression of colorectal cancer. Delving into the molecular mechanisms, we unveiled that STK16 phosphorylated c-MYC at serine 452, a pivotal event hindering the ubiquitin-proteasome pathway degradation of c-MYC. Importantly, colorectal cancer proliferation mediated by STK16 was found to be dependent on the phosphorylation of c-MYC at S452. Furthermore, the researchers demonstrated that STK16 knockout or pharmacological inhibition significantly curtailed colorectal cancer proliferation and c-MYC expression in in vivo animal models. CONCLUSION: We discovered that STK16 phosphorylates c-MYC at serine 452, hindering its degradation via the ubiquitin-proteasome pathway. STK16 inhibition, either genetically or pharmacologically, effectively curtails cancer growth and c-MYC expression in vivo. These findings highlight STK16 as a potential therapeutic target for colorectal cancer.


Assuntos
Neoplasias Colorretais , Transdução de Sinais , Animais , Humanos , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/metabolismo , Regulação Neoplásica da Expressão Gênica , Fosforilação , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Serina/metabolismo , Ubiquitinas/genética
7.
Dis Model Mech ; 17(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38655653

RESUMO

Steroid myopathy is a clinically challenging condition exacerbated by prolonged corticosteroid use or adrenal tumors. In this study, we engineered a functional three-dimensional (3D) in vitro skeletal muscle model to investigate steroid myopathy. By subjecting our bioengineered muscle tissues to dexamethasone treatment, we reproduced the molecular and functional aspects of this disease. Dexamethasone caused a substantial reduction in muscle force, myotube diameter and induced fatigue. We observed nuclear translocation of the glucocorticoid receptor (GCR) and activation of the ubiquitin-proteasome system within our model, suggesting their coordinated role in muscle atrophy. We then examined the therapeutic potential of taurine in our 3D model for steroid myopathy. Our findings revealed an upregulation of phosphorylated AKT by taurine, effectively countering the hyperactivation of the ubiquitin-proteasomal pathway. Importantly, we demonstrate that discontinuing corticosteroid treatment was insufficient to restore muscle mass and function. Taurine treatment, when administered concurrently with corticosteroids, notably enhanced contractile strength and protein turnover by upregulating the AKT-mTOR axis. Our model not only identifies a promising therapeutic target, but also suggests combinatorial treatment that may benefit individuals undergoing corticosteroid treatment or those diagnosed with adrenal tumors.


Assuntos
Dexametasona , Modelos Biológicos , Contração Muscular , Doenças Musculares , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , Taurina , Proteínas Proto-Oncogênicas c-akt/metabolismo , Humanos , Taurina/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Contração Muscular/efeitos dos fármacos , Dexametasona/farmacologia , Doenças Musculares/patologia , Doenças Musculares/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Receptores de Glucocorticoides/metabolismo , Força Muscular/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Músculo Esquelético/metabolismo , Tamanho do Órgão/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Corticosteroides/farmacologia , Ubiquitina/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/patologia , Fibras Musculares Esqueléticas/metabolismo , Esteroides/farmacologia
8.
J Cell Biol ; 223(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38656405

RESUMO

Cells exposed to proteotoxic stress invoke adaptive responses aimed at restoring proteostasis. Our previous studies have established a firm role for the transcription factor Nuclear factor-erythroid derived-2-related factor-1 (Nrf1) in responding to proteotoxic stress elicited by inhibition of cellular proteasome. Following proteasome inhibition, Nrf1 mediates new proteasome synthesis, thus enabling the cells to mitigate the proteotoxic stress. Here, we report that under similar circumstances, multiple components of the autophagy-lysosomal pathway (ALP) were transcriptionally upregulated in an Nrf1-dependent fashion, thus providing the cells with an additional route to cope with proteasome insufficiency. In response to proteasome inhibitors, Nrf1-deficient cells displayed profound defects in invoking autophagy and clearance of aggresomes. This phenomenon was also recapitulated in NGLY1 knockout cells, where Nrf1 is known to be non-functional. Conversely, overexpression of Nrf1 induced ALP genes and endowed the cells with an increased capacity to clear aggresomes. Overall, our results significantly expand the role of Nrf1 in shaping the cellular response to proteotoxic stress.


Assuntos
Autofagia , Lisossomos , Complexo de Endopeptidases do Proteassoma , Autofagia/genética , Animais , Lisossomos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Humanos , Camundongos , Fator 1 Nuclear Respiratório/metabolismo , Fator 1 Nuclear Respiratório/genética , Fator 1 Relacionado a NF-E2/metabolismo , Fator 1 Relacionado a NF-E2/genética , Inibidores de Proteassoma/farmacologia , Estresse Fisiológico , Proteostase , Estresse Proteotóxico
9.
Expert Rev Mol Med ; 26: e3, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38525836

RESUMO

Deubiquitinases are a group of proteins that identify and digest monoubiquitin chains or polyubiquitin chains attached to substrate proteins, preventing the substrate protein from being degraded by the ubiquitin-proteasome system. Deubiquitinases regulate cellular autophagy, metabolism and oxidative stress by acting on different substrate proteins. Recent studies have revealed that deubiquitinases act as a critical regulator in various cardiac diseases, and control the onset and progression of cardiac disease through a board range of mechanism. This review summarizes the function of different deubiquitinases in cardiac disease, including cardiac hypertrophy, myocardial infarction and diabetes mellitus-related cardiac disease. Besides, this review briefly recapitulates the role of deubiquitinases modulators in cardiac disease, providing the potential therapeutic targets in the future.


Assuntos
Infarto do Miocárdio , Ubiquitina , Humanos , Ubiquitina/metabolismo , Poliubiquitina/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Enzimas Desubiquitinantes/genética
10.
Nat Commun ; 15(1): 2399, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493158

RESUMO

MicroRNAs (miRNAs) play a key role in regulating gene expression and their biogenesis is precisely controlled through modulating the activity of microprocessor. Here, we report that CWC15, a spliceosome-associated protein, acts as a positive regulator of miRNA biogenesis. CWC15 binds the promoters of genes encoding miRNAs (MIRs), promotes their activity, and increases the occupancy of DNA-dependent RNA polymerases at MIR promoters, suggesting that CWC15 positively regulates the transcription of primary miRNA transcripts (pri-miRNAs). In addition, CWC15 interacts with Serrate (SE) and HYL1, two key components of microprocessor, and is required for efficient pri-miRNA processing and the HYL1-pri-miRNA interaction. Moreover, CWC15 interacts with the 20 S proteasome and PRP4KA, facilitating SE phosphorylation by PRP4KA, and subsequent non-functional SE degradation by the 20 S proteasome. These data reveal that CWC15 ensures optimal miRNA biogenesis by maintaining proper SE levels and by modulating pri-miRNA levels. Taken together, this study uncovers the role of a conserved splicing-related protein in miRNA biogenesis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , MicroRNAs , Arabidopsis/genética , Arabidopsis/metabolismo , Spliceossomos/genética , Spliceossomos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Processamento Pós-Transcricional do RNA , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , MicroRNAs/metabolismo , Regulação da Expressão Gênica de Plantas
11.
Int J Mol Sci ; 25(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474091

RESUMO

Ubiquitin-like modifier-activating enzyme 6 (UBA6) is a member of the E1 enzyme family, which initiates the ubiquitin-proteasome system (UPS). The UPS plays critical roles not only in protein degradation but also in various cellular functions, including neuronal signaling, myocardial remodeling, immune cell differentiation, and cancer development. However, the specific role of UBA6 in cellular functions is not fully elucidated in comparison with the roles of the UPS. It has been known that the E1 enzyme is associated with the motility of cancer cells. In this study, we verified the physiological roles of UBA6 in lung cancer cells through gene-silencing siRNA targeting UBA6 (siUBA6). The siUBA6 treatment attenuated the migration of H1975 cells, along with a decrease in lysosomal Ca2+ release. While autophagosomal proteins remained unchanged, lysosomal proteins, including TRPML1 and TPC2, were decreased in siUBA6-transfected cells. Moreover, siUBA6 induced the production of multivesicular bodies (MVBs), accompanied by an increase in MVB markers in siUBA6-transfected H1975 cells. Additionally, the expression of the exosomal marker CD63 and extracellular vesicles was increased by siUBA6 treatment. Our findings suggest that knock-down of UBA6 induces lysosomal TRPML1 depletion and inhibits endosomal trafficking to lysosome, and subsequently, leads to the accumulation of MVBs and enhanced exosomal secretion in lung cancer cells.


Assuntos
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/metabolismo , Lisossomos/metabolismo , Corpos Multivesiculares/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Transdução de Sinais , Ubiquitina/metabolismo , Enzimas Ativadoras de Ubiquitina/metabolismo
12.
Front Biosci (Landmark Ed) ; 29(3): 106, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38538281

RESUMO

BACKGROUND: Bortezomib (BTZ) is a powerful proteasome inhibitor that has been approved for the treatment of haematologic malignancies. Its effectiveness has been assessed against different types of solid tumours. BTZ is ineffective in most solid tumours because of drug resistance, including cholangiocarcinoma, which is associated with a proteasome bounce-back effect. However, the mechanism through which proteasome inhibitors induce the proteasome bounce-back effect remains largely unknown. METHODS: Cholangiocarcinoma cells were treated with BTZ, cisplatin, or a combination of both. The mRNA levels of Nfe2l1 and proteasome subunit genes (PSMA1, PSMB7, PSMD1, PSMD11, PSMD14, and PSME4) were determined using quantitative real time polymerase chain reaction (qPCR). The protein levels of nuclear factor-erythroid 2-related factor 1 (Nfe2l1) and proteasome enzyme activity were evaluated using western blotting and proteasome activity assays, respectively. Transcriptome sequencing was performed to screen for potential transcription factors that regulate Nfe2l1 expression. The effect of zinc finger E-box-binding homeobox 1 (ZEB1) on the expression of Nfe2l1 and proteasome subunit genes, as well as proteasome enzyme activity, was evaluated after the knockdown of ZEB1 expression with siRNA before treatment with BTZ. The transcriptional activity of ZEB1 on the Nfe2l1 promoter was detected using dual-luciferase reporter gene and chromatin immunoprecipitation assays. Cell viability was measured using the cell counting kit-8 (CCK-8) assay and cell apoptosis was assessed using western blotting and flow cytometry. RESULTS: Cisplatin treatment of BTZ-treated human cholangiocarcinoma cell line (RBE) suppressed proteasome subunit gene expression (proteasome bounce-back) and proteasomal enzyme activity. This effect was achieved by reducing the levels of Nfe2l1 mRNA and protein. Our study utilised transcriptome sequencing to identify ZEB1 as an upstream transcription factor of Nfe2l1, which was confirmed using dual-luciferase reporter gene and chromatin immunoprecipitation assays. Notably, ZEB1 knockdown using siRNA (si-ZEB1) hindered the expression of proteasome subunit genes under both basal and BTZ-induced conditions, leading to the inhibition of proteasomal enzyme activity. Furthermore, the combination treatment with BTZ, cisplatin, and si-ZEB1 significantly reduced the viability of RBE cells. CONCLUSIONS: Our study uncovered a novel mechanism through which cisplatin disrupts the BTZ-induced proteasome bounce-back effect by suppressing the ZEB1/Nfe2l1 axis in cholangiocarcinoma. This finding provides a theoretical basis for developing proteasome inhibitor-based strategies for the clinical treatment of cholangiocarcinoma and other tumours.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Cisplatino/farmacologia , Bortezomib/farmacologia , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/genética , RNA Interferente Pequeno , Ductos Biliares Intra-Hepáticos/metabolismo , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/genética , Luciferases , RNA Mensageiro , Linhagem Celular Tumoral , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Transativadores
13.
Nat Commun ; 15(1): 2485, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509117

RESUMO

Proteasome subunit hRpn13 is partially proteolyzed in certain cancer cell types to generate hRpn13Pru by degradation of its UCHL5/Uch37-binding DEUBAD domain and retention of an intact proteasome- and ubiquitin-binding Pru domain. By using structure-guided virtual screening, we identify an hRpn13 binder (XL44) and solve its structure ligated to hRpn13 Pru by integrated X-ray crystallography and NMR to reveal its targeting mechanism. Surprisingly, hRpn13Pru is depleted in myeloma cells following treatment with XL44. TMT-MS experiments reveal a select group of off-targets, including PCNA clamp-associated factor PCLAF and ribonucleoside-diphosphate reductase subunit M2 (RRM2), that are similarly depleted by XL44 treatment. XL44 induces hRpn13-dependent apoptosis and also restricts cell viability by a PCLAF-dependent mechanism. A KEN box, but not ubiquitination, is required for XL44-induced depletion of PCLAF. Here, we show that XL44 induces ubiquitin-dependent loss of hRpn13Pru and ubiquitin-independent loss of select KEN box containing proteins.


Assuntos
Glicoproteínas de Membrana , Complexo de Endopeptidases do Proteassoma , Complexo de Endopeptidases do Proteassoma/metabolismo , Glicoproteínas de Membrana/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Ubiquitina/metabolismo , Citoplasma/metabolismo , Fatores de Transcrição
14.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167124, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38508474

RESUMO

Metastasis promotes the development of tumors and is a significant cause of gastric cancer death. For metastasis to proceed, tumor cells must become mobile by modulating their cytoskeleton. MICAL1 (Molecule Interacting with CasL1) is known as an actin cytoskeleton regulator, but the mechanisms by which it drives gastric cancer cell migration are still unclear. Analysis of gastric cancer tissues revealed that MICAL1 expression is dramatically upregulated in stomach adenocarcinoma (STAD) samples as compared to noncancerous stomach tissues. Patients with high MICAL1 expression had shorter overall survival (OS), post-progression survival (PPS) and first-progression survival (FPS) compared with patients with low MICAL1 expression. RNAi-mediated silencing of MICAL1 inhibited the expression of Vimentin, a protein involved in epithelial-mesenchymal transition. This effect correlates with a significant reduction in gastric cancer cell migration. MICAL1 overexpression reversed these preventive effects. Immunoprecipitation experiments and immunofluorescence assays revealed that PlexinA1 forms a complex with MICAL1. Importantly, specific inhibition of PlexinA1 blocked the Rac1 activation and ROS production, which, in turn, impaired MICAL1 protein stability by accelerating MICAL1 ubiquitin/proteasome-dependent degradation. Overexpression of PlexinA1 enhanced Rac1 activation, ROS production, MICAL1 and Vimentin expressions, and favored cell migration. In conclusion, this study identified MICAL1 as an important facilitator of gastric cancer cell migration, at least in part, by affecting Vimentin expression and PlexinA1 promotes gastric cancer cell migration by binding to and suppressing MICAL1 degradation in a Rac1/ROS-dependent manner.


Assuntos
Neoplasias Gástricas , Humanos , 60542 , Linhagem Celular Tumoral , Proteínas dos Microfilamentos/metabolismo , Oxigenases de Função Mista/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Neoplasias Gástricas/metabolismo , Ubiquitina/metabolismo , Vimentina/genética , Vimentina/metabolismo
15.
Bioorg Med Chem ; 104: 117683, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38552596

RESUMO

CRBN is a substrate receptor for the Cullin Ring E3 ubiquitin ligase 4 (CRL4) complex. It has been observed that CRBN can be exploited by small molecules to facilitate the recruitment and ubiquitination of non-natural CRL4 substrates, resulting in the degradation of neosubstrate through the ubiquitin-proteasome system. This phenomenon, known as molecular glue-induced protein degradation, has emerged as an innovative therapeutic approach in contrast to traditional small-molecule drugs. One key advantage of molecular glues, in comparison to conventional small-molecule drugs adhering to Lipinski's Rule of Five, is their ability to operate without the necessity for specific binding pockets on target proteins. This unique characteristic empowers molecular glues to interact with conventionally intractable protein targets, such as transcription factors and scaffold proteins. The ability to induce the degradation of these previously elusive targets by hijacking the ubiquitin-proteasome system presents a promising avenue for the treatment of recalcitrant diseases. Nevertheless, the rational design of molecular glues remains a formidable challenge due to the limited understanding of their mechanisms and actions. This review offers an overview of recent advances and breakthroughs in the field of CRBN-based molecular glues, while also exploring the prospects for a systematic approach to designing these compounds.


Assuntos
Complexo de Endopeptidases do Proteassoma , Ubiquitina-Proteína Ligases , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Proteólise , Ubiquitina/metabolismo
16.
J Bone Miner Res ; 39(3): 326-340, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38477820

RESUMO

Proteasome activator subunit 3 (PA28γ) is a member of the proteasome activator family, which mainly regulates the degradation and stability of proteins. Studies have shown that it plays crucial roles in lipid formation, stemness maintenance, and blood vessel formation. However, few studies have clarified the association between PA28γ and bone diseases. Herein, we identified PA28γ as a previously unknown regulator of bone homeostasis that coordinates bone formation and lipid accumulation. PA28γ-knockout mice presented with the characteristics of low bone mass and accumulation of lipids. Suppressed expression of PA28γ restrained the osteogenic differentiation and enhanced the adipogenic differentiation of bone marrow stromal cells (BMSCs). Overexpression of PA28γ promoted osteogenic differentiation and inhibited adipogenic differentiation of BMSCs. Mechanistically, PA28γ interacted with Wnt5α, and the two interactors appeared to be positively correlated. PA28γ mainly activated the downstream Wnt/ß-catenin signaling pathway, which affects BMSCs differentiation homeostasis. Deletion of Wnt5α significantly delayed the promotion of osteogenic differentiation and partially alleviated the inhibitory effect of adipogenic differentiation of BMSCs in the PA28γ-overexpressing group. Furthermore, we demonstrated that PA28γ-knockout mice had an inhibited rate of bone healing in a drill-hole femoral bone defect model in vivo. Therefore, our results confirm the effects of PA28γ on bone formation and bone defect repair, indicating that PA28γ mainly interacts with Wnt5α to activate the Wnt/ß-catenin signaling pathway regulating BMSCs differentiation homeostasis. Our results reveal the function of PA28γ in bone diseases and provide a new theoretical basis for expanding the treatment of bone diseases.


Assuntos
Autoantígenos , Doenças Ósseas , Células-Tronco Mesenquimais , Camundongos , Animais , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/farmacologia , Osteogênese , beta Catenina/metabolismo , Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo , Via de Sinalização Wnt/fisiologia , Doenças Ósseas/metabolismo , Células da Medula Óssea/metabolismo , Células Cultivadas , Camundongos Knockout , Lipídeos
17.
Vet Microbiol ; 292: 110036, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38458048

RESUMO

Group A Rotavirus (RVA) is a major cause of diarrhea in infants and piglets. ß2-microglobulin (ß2 M), encoded by the B2M gene, serves as a crucial subunit of the major histocompatibility complex class I (MHC-I) molecules. ß2 M is indispensable for the transport of MHC-I to the cell membrane. MHC-I, also known as swine leukocyte antigen class I (SLA-I) in pigs, presents viral antigens to the cell surface. In this study, RVA infection down-regulated ß2 M expression in both porcine intestinal epithelial cells-J2 (IPEC-J2) and MA-104 cells. RVA infection did not down-regulate the mRNA level of the B2M gene, indicating that the down-regulation of ß2 M occurred on the protein level. Mechanismly, RVA infection triggered ß2 M aggregation in the endoplasmic reticulum (ER) and enhanced the Lys48 (K48)-linked ubiquitination of ß2 M, leading to the degradation of ß2 M through ERAD-proteasome pathway. Furthermore, we found that RVA infection significantly impeded the level of SLA-I on the surface, and the overexpression of ß2 M could recover its expression. In this study, our study demonstrated that RVA infection degrades ß2 M via ERAD-proteasome pathway, consequently hampering SLA-I expression on the cell surface. This study would enhance the understanding of the mechanism of how RVA infection induces immune escape.


Assuntos
Infecções por Rotavirus , Doenças dos Suínos , Animais , Microglobulina beta-2/genética , Microglobulina beta-2/metabolismo , Membrana Celular , Degradação Associada com o Retículo Endoplasmático , Antígenos de Histocompatibilidade Classe I/genética , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Infecções por Rotavirus/veterinária , Suínos , Doenças dos Suínos/metabolismo
18.
Mol Cell ; 84(6): 1000-1002, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38518747

RESUMO

In a recent study in Nature, Haakonsen et al.1 identify the SIFI complex as a stress response silencer via its E3 ligase activity to target unimported mitochondrial proteins and stress response components for degradation via the proteasome.


Assuntos
Mitocôndrias , Complexo de Endopeptidases do Proteassoma , Sobrevivência Celular , Mitocôndrias/genética , Mitocôndrias/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitinação , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
19.
J Photochem Photobiol B ; 253: 112887, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460430

RESUMO

BACKGROUND: The underlying molecular mechanisms that determine the biological effects of UVB radiation exposure on human skin are still only partially comprehended. OBJECTIVES: Our goal is to examine the human skin transcriptome and related molecular mechanisms following a single exposure to UVB in the morning versus evening. METHODS: We exposed 20 volunteer females to four-fold standard erythema doses (SED4) of narrow-band UVB (309-313 nm) in the morning or evening and studied skin transcriptome 24 h after the exposure. We performed enrichment analyses of gene pathways, predicted changes in skin cell composition using cellular deconvolution, and correlated cell proportions with gene expression. RESULTS: In the skin transcriptome, UVB exposure yielded 1384 differentially expressed genes (DEGs) in the morning and 1295 DEGs in the evening, of which the most statistically significant DEGs enhanced proteasome and spliceosome pathways. Unexposed control samples showed difference by 321 DEGs in the morning vs evening, which was related to differences in genes associated with the circadian rhythm. After the UVB exposure, the fraction of proinflammatory M1 macrophages was significantly increased at both timepoints, and this increase was positively correlated with pathways on Myc targets and mTORC1 signaling. In the evening, the skin clinical erythema was more severe and had stronger positive correlation with the number of M1 macrophages than in the morning after UVB exposure. The fractions of myeloid and plasmacytoid dendritic cells and CD8 T cells were significantly decreased in the morning but not in the evening. CONCLUSIONS: NB-UVB-exposure causes changes in skin transcriptome, inhibiting cell division, and promoting proteasome activity and repair responses, both in the morning and in the evening. Inflammatory M1 macrophages may drive the UV-induced skin responses by exacerbating inflammation and erythema. These findings highlight how the same UVB exposure influences skin responses differently in morning versus evening and presents a possible explanation to the differences in gene expression in the skin after UVB irradiation at these two timepoints.


Assuntos
Complexo de Endopeptidases do Proteassoma , Pele , Feminino , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Pele/efeitos da radiação , Raios Ultravioleta , Eritema/etiologia , Macrófagos , Expressão Gênica
20.
Am J Hum Genet ; 111(4): 791-804, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38503300

RESUMO

Mutations in proteasome ß-subunits or their chaperone and regulatory proteins are associated with proteasome-associated autoinflammatory disorders (PRAAS). We studied six unrelated infants with three de novo heterozygous missense variants in PSMB10, encoding the proteasome ß2i-subunit. Individuals presented with T-B-NK± severe combined immunodeficiency (SCID) and clinical features suggestive of Omenn syndrome, including diarrhea, alopecia, and desquamating erythematous rash. Remaining T cells had limited T cell receptor repertoires, a skewed memory phenotype, and an elevated CD4/CD8 ratio. Bone marrow examination indicated severely impaired B cell maturation with limited V(D)J recombination. All infants received an allogeneic stem cell transplant and exhibited a variety of severe inflammatory complications thereafter, with 2 peri-transplant and 2 delayed deaths. The single long-term transplant survivor showed evidence for genetic rescue through revertant mosaicism overlapping the affected PSMB10 locus. The identified variants (c.166G>C [p.Asp56His] and c.601G>A/c.601G>C [p.Gly201Arg]) were predicted in silico to profoundly disrupt 20S immunoproteasome structure through impaired ß-ring/ß-ring interaction. Our identification of PSMB10 mutations as a cause of SCID-Omenn syndrome reinforces the connection between PRAAS-related diseases and SCID.


Assuntos
Imunodeficiência Combinada Severa , Lactente , Humanos , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Mutação/genética , Linfócitos T/metabolismo , Mutação de Sentido Incorreto/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...